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Recap: week 11

0 Common Tampering and Deepfakes

OO Image Manipulation Detection

0 Video Manipulation Detection




This Week

Federated Learning
Privacy in Federated Learning

Robustness in Federated Learning
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Challenges and Future Research




Traditional Machine Learning

setup the input setup the optimiser setup the loss
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Data and model in one single place




Traditional Machine Learning

What if we need more data?

Using multiple GPUs
Data Gathering




Federated Learning: What is it?
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Next word prediction on mobile.

Google: Federated Learning: Collaborative Machine Learning without Centralized Training Data

Federated Learning: Challenges, Methods, and Future Directions, https://arxiv.org/pdf/1908.07873.pdf



http://ai.googleblog.com/2017/04/federated-learning-collaborative.html

Federated Learning: Types
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Horizontal FL (#Z& 1Y) : same features, different samples

Federated Machine Learning: Concept and Applications, https://arxiv.org/pdf/1902.04885.pdf




Federated Learning: Types
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Vertical FL (ZA\ZF 1Y) : same samples, different features

Federated Machine Learning: Concept and Applications, https://arxiv.org/pdf/1902.04885.pdf




Federated Learning: Types
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Federated Transfer Learning: different samples, different features

Federated Machine Learning: Concept and Applications, https://arxiv.org/pdf/1902.04885.pdf




Compare Different Paradigms

Where the data goes, where the gradient goes?

- Training data )& Local Computation .§ Model Aggregation
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Limitations and Future Aspects of Communication Costs in Federated Learning: A Survey




Compare Different Paradigms

Split Learning vs Federated Learning

Split Learning
[Guptal7, Vepakomma, Singh@ MIT]
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https://lwww.media.mit.edu/projects/distributed-learning-and-collaborative-learning-1/overview/



Federated Learning Frameworks
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HE: homomorphic encryption SS: secret Sharing




Objectives and Updates in FL

Global objective mui)n F(w), where F(w E picFe(w
e _ 1 le
Local objective: F(w) = i (w; x]k,y]k)

Local Updates: Wi — Wi — e VE (WE L, 600),i = 0,1, B — 1
N
: k
Global Aggregation (e.g. FedAvg): WitE < E P Wi iE-
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Federated Learning — Major Challenges

Expensive Communication
Systems Heterogeneity

Statistical Heterogeneity

*¢ & o o

Privacy and Security Concerns

Federated Learning: Challenges, Methods, and Future Directions, https://arxiv.org/pdf/1908.07873.pdf




Federated Learning - Horizontal

HFL can further be divided into ...?

HFL | Number of Par- | Training Partici- | Technical Capa-
ticipants pation bility

H2B | small frequent high

H2C | large not frequent low




Privacy and Security Threats
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3: download the latest global model
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Lyu et al. “Privacy and robustness in federated learning: Attacks and defenses.” TNNLS, 2022.




Summary of Threat Models

U Insider vs Outsider O Insider Attacks
* FL server (insider) * Byzantine: the worst attacker, knows everything
* FL participants (insider) about the system, does not obey the protocol,
* Eavesdroppers (outsider) send arbitrary updates, even collude with each
* Service users (outsider) other.

* Sybil: taking over the network by simulating
many dummy participants, out-vote the honest
J Semi-honest vs Malicious users
* Semi-honest setting
* Malicious setting

M Training-time vs Test-time
« Steal private data, steal model, corrupt the model (training time)
e Adversarial attack (test time)




Summary of Attacks

Existing attacks against server-based FL

Attack Target

Attacker Role

FL Scenario

Attack Complexity

Attack Type Model | Training Data | Participant | Server | H2B | H2C Attack Iteration Auxiliary Knowledge Required
One Round | Multiple Rounds
Data Poisoning YES NO YES NO YES | YES YES YES YES
Model Poisoning YES NO YES NO YES NO YES YES YES
Infer Class Representatives NO YES YES YES YES NO NO YES YES
Infer Membership NO YES YES YES YES NO NO YES YES
Infer Properties NO YES YES YES YES NO NO YES YES
Infer Training Inputs and Labels NO YES NO YES YES NO YES YES NO




Poisoning Attacks

Data Poisoning :
!
|

O Local Data |

GRS |
I
I
|
I
I
|

Local Data |
S |

Data poisoning vs model (weight) poisoning




Data Poisoning Attacks in Traditional ML

Qd Dirty-label Poisoning O Clean-label Poisoning
« Label flipping (only change labels) e Clean-label backdoor (only change inputs)

« Dirty-label backdoor (change
inputs and labels)

Modified Samples

. Label 4 E. —y E—) —> Label 4
Target Label: 4 . (Target) | ’7. Train w/ Trigger | Lol
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Configuration a) Training b) Inference




Data Poisoning Attacks in Traditional ML

Refool

A simple pattern can make the model to memorize




FL Poisoning Attacks — Model Poisoning

Main characteristics:
* Change local model weights

* Mostly Byzantine attack (attacker can do
anything to the weights)

* Can attack Byzantine-robust aggregation
mechanisms such as Krum and coordinate-
wise median instead of weighted averaging

Definition IIL.1. /Byzantine Model Poisoning] [13], [14,
In the tth round, an honest participant uploads Awgt) =

VFZ-('w,L.(t)) while a dishonest participant/adversary can uploa
arbitrary values.

Aap® *, if ¢-th participant is Byzantine,
w - =
’ VF(w"), otherwise,

Krum:

Lt4+1 = Tt — VYt KR(Vvlta S 7Vrf)
. 2
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KR(Vl,...,Vn) =V;




Privacy Attacks
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Privacy Attacks — Inference Attacks

Inference class representations using GANs

Victim Adversary

Reconstruct Alice’s face image CIFAR-10 horse class

Deep models under the GAN: information leakage from collaborative deep learning, CCS 2017




Privacy Attacks — Inference Attacks

unsupervised attack componen
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Inference membership:

* Passive attacks: observe and inference.

attack output: O

attack model

[ Encoder (ECN)

e Active attacks: influence the target
model in order to extract more

information.
§ E@_ I~
Weakness of FL: FL creates an environment for (almost) white- x w % ,
box attacks | Y3

target model

Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning, S&P, 2019




Privacy Attacks — Inference Attacks

Other inference attacks:

inferring properties, training data, labels ...
 Deep Leakage from Gradient (DLG)
 Improved Deep Leakage from Gradient (iDLG)

Deep Leakage from Gradients

Ligeng Zhu Zhijian Liu Song Han
Massachusetts Institute of Technology
{ligeng, zhijian, songhan}@mit.edu

Abstract

Exchanging gradients is a widely used method in modern multi-node machine
learning system (e.g., distributed training, collaborative learning). For a long time,
people believed that gradients are safe to share: i.e., the training data will not be
leaked by gradients exchange. However, we show that it is possible to obtain the
private training data from the publicly shared gradients. We name this leakage as
Deep Leakage from Gradient and empirically validate the effectiveness on both
computer vision and natural language processing tasks. Experimental results show
that our attack is much stronger than previous approaches: the recovery is pixel-
wise accurate for images and token-wise matching for texts. Thereby we want to
raise people’s awareness to rethink the gradient’s safety. We also discuss several
possible strategies to prevent such deep leakage. Without changes on training
setting, the most effective defense method is gradient pruning.

iDLG: Improved Deep Leakage from Gradients

Inverting Gradients - How easy is it to break privacy

in federated learning?

Bo Zhao, Konda Reddy Mopuri, Hakan Bilen
School of Informatics
The University of Edinburgh, United Kingdom
{bo.zhao, kmopuri, hbilen}Qed.ac.uk

Abstract

It is widely believed that sharing gradients will not leak private training data
in distributed learning systems such as Collaborative Learning and Federated
Learning, etc. Recently, Zhu ef al. [1] presented an approach which shows the
possibility to obtain private training data from the publicly shared gradients. In
their Deep Leakage from Gradient (DLG) method, they synthesize the dummy data
and corresponding labels with the supervision of shared gradients. However, DLG
has difficulty in convergence and discovering the ground-truth labels consistently.
In this paper, we find that sharing gradients definitely leaks the ground-truth
labels. We propose a simple but reliable approach to extract accurate data from the
gradients. Particularly, our approach can certainly extract the ground-truth labels as
opposed to DLG, hence we name it Improved DLG (iDLG). Our approach is valid
for any differentiable model trained with cross-entropy loss over one-hot labels.
‘We mathematically illustrate how our method can extract ground-truth labels from
the gradients and empirically demonstrate the advantages over DLG.

Jonas Geiping* Hartmut Bauermeister * Hannah Drige *

Michael Moeller

Dep. of Electrical Engineering and Computer Science
University of Siegen
{jonas.geiping, hartmut.bauermeister, hannah.droege,
michael.moeller }Cuni-siegen.de

Abstract

The idea of federated learning is to collaboratively train a neural network on a
server. Each user receives the current weights of the network and in turns sends
parameter updates (gradients) based on local data. This protocol has been designed
not only to train neural networks data-efficiently, but also to provide privacy benefits
for users, as their input data remains on device and only parameter gradients are
shared. But how secure is sharing parameter gradients? Previous attacks have
provided a false sense of security, by succeeding only in contrived settings - even
for a single image. However, by exploiting a magnitude-invariant loss along with
optimization strategies based on adversarial attacks, we show that is is actually
possible to faithfully reconstruct images at high resolution from the knowledge of
their parameter gradients, and demonstrate that such a break of privacy is possible
even for trained deep networks. We analyze the effects of architecture as well as
parameters on the difficulty of reconstructing an input image and prove that any
input to a fully layer can be ically i of
the remaining architecture. Finally we discuss settings encountered in practice and
show that even aggregating gradients over several iterations or several images does
not guarantee the user’s privacy in federated learning applications.




Defenses — Privacy Defense

1. Homomorphic Encryption: Homomorphic properties:
* RSA * Allows computation directly on
e ElGamal encrypted data ( “TJE AT L")
e Paillier
- .. * Needs to be designed for each
algorithm

Framework | Developer | Vertical | Horizontal | Encryption

FATE WeBank v/ v HE .
PySyft OpenAl v v HE, SS Epk (ml T m2) = C1 D C2
TF Federated Google X v SS
TF Encrypted Dropout v v HE, SS . .
CrypTen Facebook v v HE, SS Epk (a’ ml) — a ® C1

A side note: attacking encrypted FL is challenging but still possible!




Defenses — Privacy Defense

2. Secure Multiparty Computation (SMC, Yao Characteristics:
sharing): * High level privacy
 SecureML (data-independent offline phase + * High computation and communication
fast online phase) cost

Offline multiplication triplets, truncate, sharing

Yao's Millionaires' problem

Protocols for Secure Computations, Andrew Chi-Chih Yao, 1982, UC Berkeley




Defenses — Privacy Defense

2. Differential Privacy (DP): Types of DP:

e Local DP
e (Centralized DP

Definition V.1. (e, d)-differential privacy [98]. For scalars e Distributed DP

e > 0and 0 < 0 < 1, mechanism M is said to preserve
(approximate) (e,6)-differential privacy if for all adjacent
datasets D, D’ € D™ and measurable S € range(M),

PriM(D) € S} < exp(e)-Pr{M(D')e S} +§ .

DP type Trusted aggregator? | Who should add noise? Privacy Guarantee Error Bound
CDP [45], [7] Yes aggregator aggregated value O(%)
LDP [18], [109] No user locally released value O( ‘/j)
DDP [21], [110] No user aggregated value O(%)




Defenses — Privacy Defense

2. Differential Privacy (DP) | e | | r,
|| Alice [\_| ! 12 5
| 12 i 5
. | Bob 5,%——|, Frequency ||
| e \ > 1
: Original [ Encoded Perturbed i ' = L
Alice | yata | data data : g o _' :
6oy | Original | [Encoded Perturbed  Client Semer | Pibiciser
data data data
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1 T T ) T | d
Encoding Perturbation Aggregation Estimation | Alice N ,
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(b) Local differential privacy




Defenses — Privacy Defense

2. Differential Privacy (DP):

Technique  Encoding Perturbation Variance Communication
= i = = eefd_l’ if t=v d—2+3€
GRR[17] t=wv Prif = v] {ef—l—ld—l’ it 0((66_1)2) logd
t=1[0,---,1,---,0], a1 %, if tli] =1 e
OUE [20] where t[v] =1 Prit] =11 = {—ee]_-l_l) if t[i] =0 © ((66_1)2) i
r=<H,t>;
H € H; 1-L1f iftl] =
—_ P t =1| = 25 7 €
RAPPOR[8] t=[0,---,1,--] rftl] =1] {%f, if t[i] =0 O(%) logm
q 1,if H(v) =1, where f = 2 et
where t[i] = {0, otherwise e*/2+1
r=<H,t>; . GL_:[a if t =H(v)
R Pr[t =H(w)] =< ¢1f _ , de€
OLH[0]  H e i, if ARG O () logn
=H() where g =e€ +1
‘I’G{—ﬁ,ﬁ}"ﬂd; . {cedt, w.p. %
r=<i,t>; =9_ 1 4e€
JLRR[21] 7 o cedt, P o) ((66_1)2) logm
t = ®i, ] where cc = S5
® : 29 x 29 Hadamard Matrix,
where ®[i, j] = 274/2(—1)<hi>; . € ift=1 c
HRR [22,31] 7 =<i,t>; prif=1=1 ¢ if o) (Lﬂ) o(1)
i € [29); ey Wft=-1 (=)
t = ®[i,v]

Types of frequency estimation



Defenses — Privacy Defense

2. Differential Privacy (DP):

Company | Deployment | Purpose/Functionality Techniques Population Parameters Limitations g)%errcle
Collect up-to-date
Chrome statistics about the | 2-level RR e =0.5343 )
Google Browser activity of their users | memoization 14 million h'=2 Sﬁ; fizlti];ii cf}i);n deasta Yes
(2014) and their client-side | Bloom filter k= 128 9 &
software
. | RR €e=2~8 The overall privacy cost
Apple ;gaScl% (2016) fiset:gflzerg;itsﬁequen CMS I;unriﬁfi'iifs mi= 256 ~ 32768 for each device is un- | No
HT3 h = 1024 ~ 65536 bounded
Repeated collection | 1BitMean
. Windows 10 | of counter data | dBitFlip _— . Not suitable for data
Micrasoft (2017) mean estimation a-point rounding milions e=_ with significant changes e
histogram estimation memoization
HANA 2.0 Count Leave it up to | Only support numerical
SAP : Sum LM> - the data con- | value The added noise | No
SPS03 (2018)
Average sumer is unbounded

L b number of hash functions

2 k. Bloom filter size

4 m CMS size

3 HT Hadamard transform
> LMLaplace mechanism

Real-world applications.




w' = w+ aggregate(Aw; + Aw, + -+ + Awy,)
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(a) FL without privacy.




w' = w+ M(aggregate(Aw; + Aw, + -+ + Aw,)) M: A DP mechanism

Central Server
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(b) Centralized DP: FL with a trusted server.




w' = w+ aggregate(M(Aw;) + M(Aw,) + - + M(Aw,))

Central Server

Mi(Aw, ) Vi{Aw,) M: A DP mechanism
Y
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(c) Local DP: FL without a trusted server.




w' = w+ D(aggregate(E(M(Aw;)) + E(M(Aw,)) + -+« + E(M(Awy,))))

M: A DP mechanism
E: encryption

Central Server

A D: decryption
w' w w'
E(M(Aw,)) E(M(Aw,)) | E(M(Awy,))
Ez3 Ez3 Ez3
Party 1 Party 2 Party n

(d) Distributed DP with SMC: FL without a trusted server.




Defenses — Byzantine Defense

Algorithm: Krum (for Byzantine robustness)
Setting: n participants, f are Byzantine, withm = 2f + 3

At communication round t,
server receives {85, 85, ..., 84}
for each &;:
select the closest (L2 distance) n-f-2 into set C;
compute score(8t) = Zseci(‘sf —0)
Otrum = 0F = arg (Srnin{score(tﬁ'i), ..., score(6L)}

t+1

update global parameter: w'** = w' + &4,-um

Blanchard et al. “Machine learning with adversaries: Byzantine tolerant gradient descent.” NeurlPS, 2017.




Defenses — Byzantine Defense

Algorithm: Krum (for Byzantine robustness)

a6 WHEBE
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Blanchard et al. “Machine learning with adversaries: Byzantine tolerant gradient descent.” NeurlPS, 2017.




Defenses — Byzantine Defense

More robust aggregation methods:

e  Multi-Krum = Krum + Averaging
= Krum robustness + increased convergence speed
 coordinate-wise median, coordinate-wise trimmed mean
median is not good for convergence
e  Bulyan = Krum + trimmed median
e Median and geometric-median

* (Robust Federated Aggregation) RFA: approximate geometric median (not robust to

Byzantine attacks)




Defenses — Byzantine Defense

Model poisoning attack can break Krum and coordinate-wise median

argmm AL({x;,T:}_1, W5) + L(Dyp, W)

m

+ :0||5t o (sben ”2

T;: adversarial target class
r: number of poisoned samples
D,y clean data

Wg: estimation of the global parameters

Open = Zi_e[k]\m aidf__l,

Reversed gradients from the last round.

Analyzing federated learning through an adversarial lens, ICML 2019.




Defenses — Sybil Defense

From traditional ML: Reject on Negative Influence (RONI)
* With a clean validation dataset
* |t requires uniform distribution in non-IID setting, not good.

Federated learning aggregator

FoolsGold: [global model W+ d | ‘
Sybil share the same objective, drifts I ¢ ¢ ¢ ¢ ,
away from the original objective ﬂ @ ‘—j E]
Core idea: cosine similarity = | = = - ;
goona - -
updatesl\ >
\ W

Label: 0 Label: 1 Label: 7 Label: 9 % ~? Honest client
s updates

0 <~

. sybil 2
‘updates

T T (b) Federated learning with sybil-based label-flipping poisoning

cSij = cosine_similarity(z IAVS Z Ajt)

FoolsGold: Mitigating Sybils in Federated Learning Poisoning, https.//arxiv.org/abs/1808.04866




Defenses — Sybil Defense

Distributed backdoor attack (DBA) can bypass both RFA and FoolsGold.

! '
|||||||||||||||||

[ federated learning aggregator ] [ federated learning aggregator ]

e P i . oy So T

®- ®o: O: O ©O:
: [ | | roison - a & . O
entralized attacke

® 6 6 ©
. . distributed attackers

benign participants

. local trigger 1 local trigger 2 local trigger 3 local trigger 4
l I } global trigger [ GI ] ——
Gt :
(a) centralized backdoor attack (current setting) (b) DBA.: distributed backdoor attack (ours)

DBA: Distributed Backdoor Attacks against Federated Learning, ICLR 2020.




Defenses — Summary

Defense against Federated Learning Poisoning. n: number of participants.

Poisoning Defense Technique IID Data | Non-IID Data | Breaking Point | Data Poisoning | Model Poisoning
RONI [133], [28] Error rate v X NA v X
Auror [127] Clustering v X NA v X
Krum [13] Euclidean distance v X (n —2)/2n v X
Coordinate-wise Median [14] Coordinate-wise median v X 1/2 v X
Bulyan [128] Krum + trimmed median v X (n-3)/4n v X
FoolsGold [28] Contribution similarity v v NA v X
RFA [48] Geometric median v X NA v v




Remaining Challenges and Future Research

d Curse of dimensionality
 Larger models are more vulnerable
e Sharing weights/gradients may not be a good idea

(d Weaknesses of current attacks
. GAN attack assumes the class of data is from one single participant
. DLG/iDLG work with second-order gradient method (expensive) and small
minibatch-gradients (B=8)

d  Vulnerability to free riders:
pretend to have data but not.




Remaining Challenges and Future Research

(d Weakness of Current Privacy-preserving Techniques

Secure aggregation is more vulnerable to poisoning attacks since individual
updates cannot be checked

Adversarial training (IID or non-IID, local or global, training or distillation)?
Sample-level DP does not stop attribute/property/statistical inference attacks
DP hurts accuracy, efficiency (is millions of participant-level DP possible?)




Remaining Challenges and Future Research

(d Defense efficiency
 Expensive to check each participant (detection)
e When and how to deploy a defense?

(d Hard to achieve all objective of private and secure
e Efficiency
* Privacy
* Robustness
* Generalization
* Collaborative fairness




Remaining Challenges and Future Research

d FL: optimization and convergence
e GD->SGD -> Parallel SGD -> Local SGD

Table 1: Summary of results on the synchronization rounds R required for linear speedup in M.
All bounds hide multiplicative polylog factors and variables other than M and T for ease of presentation.
Notation: M: number of workers; 7": parallel runtime.

Synchronization Required for Linear Speedup

Assumption Algorithm  Strongly Convex General Convex Reference
Assumption 1 FEDAve  T3iM:z - (Stich, 2019a)
T3iMs - (Haddadpour et al., 2019b)
M TzM3 (Stich and Karimireddy, 2019)
M T3M? (Khaled et al., 2020)
FEDAC M3 min{T%M%,T%M%} Theorems 3.1, E.1 and E.2
Assumption 2 FEDAva maX{T_%M 3, 1} T2M?3 Theorems 3.4 and E.4

FEDAC max{T-¢M3s,1} max{TsM1,T¢ Mz} Theorems 3.3 and E.3

Federated Accelerated Stochastic Gradient Descent Tighter Theory for Local SGD on Identical and Heterogeneous Data, AISTAS,
2020; On the convergence of FedAvg on non-IID data, ICLR 2020
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