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Recap: week 11

p Common Tampering and Deepfakes

p Image Manipulation Detection

p Video Manipulation Detection



This Week

p Federated Learning

p Privacy in Federated Learning

p Robustness in Federated Learning

p Challenges and Future Research



Traditional Machine Learning

Data Model

Data and model in one single place



Traditional Machine Learning

Data Model

What if we need more data?

Data Gathering
Using multiple GPUs



Federated Learning: What is it?

Next word prediction on mobile.

Google: Federated Learning: Collaborative Machine Learning without Centralized Training Data
Federated Learning: Challenges, Methods, and Future Directions, https://arxiv.org/pdf/1908.07873.pdf

http://ai.googleblog.com/2017/04/federated-learning-collaborative.html


Federated Learning: Types

Federated Machine Learning: Concept and Applications, https://arxiv.org/pdf/1902.04885.pdf

Horizontal FL（横着切）: same features, different samples



Federated Learning: Types

Federated Machine Learning: Concept and Applications, https://arxiv.org/pdf/1902.04885.pdf

Vertical FL（纵着切）: same samples, different features



Federated Learning: Types

Federated Machine Learning: Concept and Applications, https://arxiv.org/pdf/1902.04885.pdf

Federated Transfer Learning: different  samples, different features



Compare Different Paradigms 

Where the data goes, where the gradient goes?

Limitations and Future Aspects of Communication Costs in Federated Learning: A Survey



Compare Different Paradigms 

Split Learning vs Federated Learning

https://www.media.mit.edu/projects/distributed-learning-and-collaborative-learning-1/overview/



Federated Learning Frameworks

HE: homomorphic encryption   SS: secret Sharing



Objectives and Updates in FL

Global objective

Local objective:

Local Updates:

Global Aggregation (e.g. FedAvg):



Federated Learning – Major Challenges

u Expensive Communication

u Systems Heterogeneity

u Statistical Heterogeneity

u Privacy and Security Concerns 

Federated Learning: Challenges, Methods, and Future Directions, https://arxiv.org/pdf/1908.07873.pdf



Federated Learning - Horizontal

HFL can further be divided into …?



Privacy and Security Threats

Lyu et al. “Privacy and robustness in federated learning: Attacks and defenses.” TNNLS, 2022.



Summary of Threat Models

q Insider vs Outsider
• FL server (insider)
• FL participants (insider)
• Eavesdroppers (outsider)
• Service users (outsider)

q Insider Attacks
• Byzantine: the worst attacker, knows everything 

about the system, does not obey the protocol, 
send arbitrary updates, even collude with each 
other.

• Sybil: taking over the network by simulating
many dummy participants, out-vote the honest 
usersq Semi-honest vs Malicious

• Semi-honest setting
• Malicious setting

q Training-time vs Test-time
• Steal private data, steal model, corrupt the model (training time)
• Adversarial attack (test time)



Summary of Attacks

Existing attacks against server-based FL



Poisoning Attacks

Data poisoning vs model (weight) poisoning



Data Poisoning Attacks in Traditional ML

q Dirty-label Poisoning
• Label flipping (only change labels)
• Dirty-label backdoor (change 

inputs and labels)

q Clean-label Poisoning
• Clean-label backdoor (only change inputs)



Data Poisoning Attacks in Traditional ML

A simple pattern can make the model to memorize



FL Poisoning Attacks – Model Poisoning

Main characteristics: 

• Change local model weights

• Mostly Byzantine attack (attacker can do 
anything to the weights)

• Can attack Byzantine-robust aggregation 
mechanisms such as Krum and coordinate-
wise median instead of weighted averaging Krum:



Privacy Attacks

For every communication round, 
local clients have the chance to 
reverse engineer others’ 
gradients.

From the reversed gradients, reverse 
engineer: 
• Representations
• Membership
• Properties
• Sensitive attributes
• In VFL: features



Privacy Attacks – Inference Attacks

Deep models under the GAN: information leakage from collaborative deep learning, CCS 2017

Inference class representations using GANs

CIFAR-10 horse classReconstruct Alice’s face image



Privacy Attacks – Inference Attacks

Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning, S&P, 2019

Inference membership:

• Passive attacks: observe and inference.

• Active attacks:  influence the target 
model in order to extract more 
information.

Weakness of FL: FL creates an environment for (almost) white-
box attacks



Privacy Attacks – Inference Attacks

Other inference attacks: 
inferring properties, training data, labels ...

• Deep Leakage from Gradient (DLG)
• Improved Deep Leakage from Gradient (iDLG)
• …



Defenses – Privacy Defense

1. Homomorphic Encryption:
• RSA
• El Gamal
• Paillier
• …

Homomorphic properties:
• Allows computation directly on 

encrypted data (“可算不可见”)

• Needs to be designed for each 
algorithm

A side note: attacking encrypted FL is challenging but still possible!



Defenses – Privacy Defense

2. Secure Multiparty Computation (SMC, Yao 
sharing):

• SecureML (data-independent offline phase + 
fast online phase)

Offline multiplication triplets, truncate, sharing

Characteristics:
• High level privacy
• High computation and communication 

cost

Protocols for Secure Computations, Andrew Chi-Chih Yao, 1982, UC Berkeley

Yao's Millionaires' problem



Defenses – Privacy Defense

2. Differential Privacy (DP): Types of DP:
• Local DP
• Centralized DP
• Distributed DP



Defenses – Privacy Defense

Data flow of statistics under LDP

2. Differential Privacy (DP):



Defenses – Privacy Defense

2. Differential Privacy (DP):

Types of frequency estimation



Defenses – Privacy Defense

2. Differential Privacy (DP):

Real-world applications.





M: A DP mechanism



M: A DP mechanism



M: A DP mechanism
E: encryption
D: decryption



Defenses – Byzantine Defense

Algorithm: Krum (for Byzantine robustness)

Setting: n participants, f are Byzantine, with 𝒏 ≥ 𝟐𝒇 + 𝟑

At communication round t, 
server receives {𝜹𝟏𝒕 , 𝜹𝟐𝒕 , … , 𝜹𝒏𝒕 }
for each 𝜹𝒊𝒕: 

select the closest (L2 distance) n-f-2 into set 𝑪𝒊
compute 𝒔𝒄𝒐𝒓𝒆 𝜹𝒊𝒕 = ∑𝜹∈𝑪𝒊 𝜹𝒊

𝒕 − 𝜹
𝜹𝒌𝒓𝒖𝒎 = 𝜹∗ = arg	min

𝜹
{𝒔𝒄𝒐𝒓𝒆 𝜹𝟏𝒕 , …, 𝒔𝒄𝒐𝒓𝒆 𝜹𝒏𝒕 }

update global parameter: 𝒘𝒕.𝟏 = 𝒘𝒕 + 𝜹𝒌𝒓𝒖𝒎

Blanchard et al. “Machine learning with adversaries: Byzantine tolerant gradient descent.” NeurIPS, 2017.



Defenses – Byzantine Defense

Algorithm: Krum (for Byzantine robustness)

Blanchard et al. “Machine learning with adversaries: Byzantine tolerant gradient descent.” NeurIPS, 2017.

红色：攻击梯度

蓝色：真实梯度

黑色：本地梯度

黑色曲线：损失函数



Defenses – Byzantine Defense

• Multi-Krum = Krum + Averaging

= Krum robustness + increased convergence speed

• coordinate-wise median, coordinate-wise trimmed mean

median is not good for convergence

• Bulyan = Krum + trimmed median

• Median and geometric-median

• (Robust Federated Aggregation) RFA: approximate geometric median (not robust to 

Byzantine attacks)

More robust aggregation methods:



Defenses – Byzantine Defense

Model poisoning attack can break Krum and coordinate-wise median  

Analyzing federated learning through an adversarial lens, ICML 2019.

𝜏/: adversarial target class
r: number of poisoned samples
𝐷0: clean data
?𝑤12 : estimation of the global parameters

Reversed gradients from the last round. 



Defenses – Sybil Defense

From traditional ML: Reject on Negative Influence (RONI)
• With a clean validation dataset 
• It requires uniform distribution in non-IID setting, not good.

FoolsGold:
Sybil share the same objective, drifts 
away from the original objective
Core idea: cosine similarity

FoolsGold: Mitigating Sybils in Federated Learning Poisoning, https://arxiv.org/abs/1808.04866



Defenses – Sybil Defense

Distributed backdoor attack (DBA) can bypass both RFA and FoolsGold.

DBA: Distributed Backdoor Attacks against Federated Learning, ICLR 2020. 



Defenses – Summary

Defense against Federated Learning Poisoning. n: number of participants. 



Remaining Challenges and Future Research

q Curse of dimensionality
• Larger models are more vulnerable
• Sharing weights/gradients may not be a good idea

q Weaknesses of current attacks
• GAN attack assumes the class of data is from one single participant
• DLG/iDLG work with second-order gradient method (expensive) and small 

minibatch-gradients (B=8)

q Vulnerability to free riders: 
 pretend to have data but not.



q Weakness of Current Privacy-preserving Techniques
• Secure aggregation is more vulnerable to poisoning attacks since individual 

updates cannot be checked
• Adversarial training (IID or non-IID, local or global, training or distillation)?
• Sample-level DP does not stop attribute/property/statistical inference attacks
• DP hurts accuracy, efficiency (is millions of participant-level DP possible?)

Remaining Challenges and Future Research



q Defense efficiency
• Expensive to check each participant (detection)
• When and how to deploy a defense? 

q Hard to achieve all objective of private and secure
• Efficiency
• Privacy
• Robustness
• Generalization
• Collaborative fairness

Remaining Challenges and Future Research



Remaining Challenges and Future Research

q FL: optimization and convergence
• GD -> SGD -> Parallel SGD -> Local SGD

Federated Accelerated Stochastic Gradient Descent Tighter Theory for Local SGD on Identical and Heterogeneous Data, AISTAS, 
2020; On the convergence of FedAvg on non-IID data, ICLR 2020
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